
Self-Distillation Dual-Memory Online Hashing with
Hash Centers for Streaming Data Retrieval

Chong-Yu Zhang 1, Xin Luo 1*, Yu-Wei Zhan 1, Peng-Fei Zhang 2, Zhen-Duo Chen 1, Yongxin Wang 3, Xun Yang 4, Xin-Shun Xu 1

1Shandong University 2University of Queensland 3Shandong Jianzhu University 4University of Science and Technology

Introduction

With the continuous generation of massive amounts of multimedia
data nowadays, hashing has demonstrated significant potentials for
large‐scale search. To handle the emerging needs for streaming data
retrieval, online hashing is drawing more and more attention. For on‐
line scenario, data distribution may change and concept drifts may
occur as new data is continuously added to the database. Inevitably,
hashing models may lose or disrupt the previously obtained knowl‐
edge when learning from new information, which is called the prob‐
lem of catastrophic forgetting. In this paper, we propose a new
online hashing method called Self‐distillation Dual‐memory Online
Hashing with Hash Centers, which is abbreviated to SDOH‐HC, to
overcome this challenge. Specifically, SDOH‐HC contains replay
and distillation modules. For replay, a dual‐memory mechanism is
proposed which involves hash centers and exemplars. For knowl‐
edge distillation, we let hash centers distill information from them‐
selves, i.e., the version of last round. Additionally, a new objective
function is further built on above modules and is solved discretely
to learn hash codes. Extensive experiments on three benchmark
datasets demonstrate the effectiveness of our method.

The Proposed Method

Notations and Problem Definition

In this paper, we assume that the image data comes at a streaming
manner. At the t‐th round. A new chunk of image data X⃗(t) ∈ Rnt×d

is added to the database, where nt is the chunk size and d is the fea‐
ture dimensionality. L⃗(t) ∈ Rnt×c is the corresponding label matrix of
new chunk, where c is the number of categories. Before this chunk,
existing old data at previous rounds X̃(t) ∈ RNt−1×d (with labels
L̃(t) ∈ RNt−1×c) have been used for training and accumulated in the
database, and the corresponding hash codes B̃(t) ∈ {−1, 1}Nt−1×r

have also been generated and stored, where Nt−1 = n1+, ..., +nt−1
is the size of existing data and r is the length of hash codes.

For online hashing, the goals are: 1) generating hash codes B⃗(t) for
newly coming data; 2) learning the hash function matrix P(t) which
could transform query data q into hash codes by sgn(qP(t)).
Hash Centers Calculation

The concept of hash center is recently proposed in [3] for the first
time, which refers to a set of data points scattered in the Hamming
space with a sufficient mutual distance between each other. How‐
ever, fixed hash centers extracted via predetermined Hadamard ma‐
trix [1] may be suboptimal because they contain no semantic infor‐
mation and could not properly adapt to the data distribution. In
online hashing, how to learn non‐fixed hash centers is still an open
problem. Besides, the stability‐plasticity dilemma [2] should be well
taken into consideration. If we use fixed hash centers, models may
fail to be plastic enough to adapt to changing environments and
learn new knowledge from streaming data. How to let hash cen‐
ters achieve an appropriate balance between stability and plasticity
has not been investigated.

To overcome above limitations, we propose a novel and new hash
centers calculation strategy, which can be written as follows,

min
B⃗(t),Y⃗(t)

θ∥C − Y⃗(t)T ∥2
F + η∥rL⃗(t) − B⃗(t)Y⃗(t)T ∥2

F ,

s.t. B⃗(t) ∈ {−1, 1}nt×r, Y⃗(t) ∈ {−1, 1}c×r,

(1)

where C ∈ {−1, 1}r×c is the predetermined hash centers based on
Hadamard matrix, Y⃗(t) ∈ {−1, 1}c×r is the learnable hash centers at
t‐th round, which is not fixed and could adapt to newly arriving data,
θ and η are trade‐off parameters. For the first term, we let Y⃗(t) be
similar with the fixed hash centers C. There are several advantages:
1) Hadamard matrix based hash centers could act as good initializa‐
tion of Y⃗(t); 2) Y⃗(t) is possible to inherit the good property from C
that hash centers inC are mutually orthogonal; 3) asC is fixed while
Y⃗(t) is learnable, we expect Y⃗(t) to be stable and plastic enough by
making them similar. For the second term, the connection between
hash centers and hash codes of data is built. If two samples share
the same labels, they will have the same hash codes which meets
the core of hash learning that semantically similar samples should
be close in Hamming space.

Self‐Distillation Loss

Following the teacher‐student distillation paradigm, we take a differ‐
ent approach that we denote the hash centers of last round as Ỹ(t)

(Ỹ(t) can also be represented as Y⃗(t−1)) and enable it to act as the
teacher to guide the learning of Y⃗(t). The formulation can be repre‐
sented as follows,

min
Y⃗(t)

∥rK − Ỹ(t)Y⃗(t)T ∥2
F s.t. Y⃗(t) ∈ {−1, 1}c×r, (2)

where K is the constructed pairwise similarity matrix among hash
centers. In matrixK whose size is c×c, the diagonal elements are all
1 while the remaining elements are ‐1 since every class is not similar
with others but itself.

From Eq. (2), only former and current hash centers are involved. This
loss can be viewed as that we use former hash centers as teacher to
guide the learning of student. Thus, we call this different knowledge
distillation term as self‐distillation.

Hash Center and Exemplar Memories
To support self‐distillation in Eq. (2), a hash center memory is used
to dynamically store the hash centers at each data round. Besides,
a subset of representative data points are stored in exemplar
memory to further alleviate catastrophic forgetting. We retain the
similarity between exemplars and new data samples, and try to
embed the knowledge behind exemplars into the hash codes
learning procedure of new data,

min
B⃗(t)

∥rS(t)
qn − B̃(t)

q B⃗(t)∥2
F s.t. B⃗(t) ∈ {−1, 1}nt×r, (3)

where S(t)
qn is the constructed similarity and B̃(t)

q is the hash codes
of exemplars which is stored in memory. Besides, we design a
novel calculation of S(t)

qn. If one exemplar and one new data point is
semantically dissimilar, we directly assign the value ‐1 to measure
their similarity. Otherwise, if they are semantically similar, the
similarity is defined as the inner product of their features.
In the exemplar memory, information of nq points are saved. The
exemplar memory is dynamically updated. At each round, n2 points
are selected from new data chunk to replenish the exemplar
memory and we randomly retain n1 points from nq points, where
nq = n1 + n2. For point selection strategy, please refer to the paper.

Overall Architecture

1

1

.

.

.

1

1

1

-1

.

.

.
-1

1

1

-1

.

.

.
-1

1

1

1

.

.

.

-1

-1

1

1

1

1

1

1

1

1

1

-1

1

-1

1

-1

1

-1

1

1

-1

-1

1

1

-1

-1

1

-1

-1

1

1

-1

-1

1

1

1

1

1

-1

-1

-1

-1

1

-1

1

-1

-1

1

-1

1

1

1

-1

-1

-1

-1

1

1

1

-1

-1

1

-1

1

1

-1

1 1 ... 1 1
1 1 ... -1 -1
1 -1 ... -1 1
1 -1 ... -1 1

Hash Centers based
on Hadamard Matrix

0 0 … 1 0

1 0 … 1 0
…

Label matrix

1 -1 -1 …
-1 1 -1 …
-1 -1 1 …
… … … 1

dog cat sky

dog

cat

sky

K

-1 1 1 … -1 1 -1

1 -1 1 … 1 1 -1

1 1 -1 … 1 -1 -1

Hadamard Matrix

𝐏(𝑡)

Image features
Pairwise Similarity

Existing data

New
data

Existing data

Exemplars

Hash Function Learning

Data chunk at 𝑡 − 1 round Exemplar memory at 𝑡 − 1 round

Lower loss

Exemplar New exemplar memory

𝐁(𝑡)

𝐘(𝑡)

෨𝐘(𝑡)
Hash Center
Memory

Exemplar Memory

Hash Codes Learning
Self-distillation

Figure 1. The overall framework of SDOH‐HC. The pink region illustrates hash
codes learning step while the beige region represents hash function learning
step. Within hash codes learning, mistyrose and lightcyan areas are hash centers
self‐distillation and exemplar memory, respectively.

Hashing Formulation
Within the supervised hashing literature, the ∥rS − BB∥2

F term is
widely employed to preserve semantic similarity, where S denotes
the instance‐instance pairwise similarity matrix of the data. We
employ a subtle method to construct S to avoid square time
complexity, i.e., S = LLT , where L represents the ℓ2‐norm of the
normalized label matrix, with the j‐th row defined as Lj = Lj/∥Lj∥.
To accommodate the online scenario, at the t‐th round, S(t) can be
reformulated as follows,

S(t) =

[
S(t)

oo S(t)
on

S(t)
no S(t)

nn

]
, (4)

where letter ‘o’ in subscript represents old data and ‘n’ denotes new
data. For example, S(t)

no means the similarity between new data and
old data at current round.
For the sake of simplicity, we solely utilize S(t)

no. Therefore, the
hashing formulation can be reformulated as follows,

min
B⃗(t)

∥rS(t)
no − B⃗(t)B̃(t)T ∥2

F , s.t.B⃗(t) ∈ {−1, 1}nt×r. (5)

In this equation, by minimizing the squared loss between the
similarity matrix of old and new data and the inner product of the
hash codes, knowledge acquired in the past is embedded into the
hash codes of new data.
Considering the NP‐hard optimization problem, we employ a
real‐valued auxiliary variable V as a substitute for hash codes.
Meanwhile, the constraint of VV = nIr is added to ensure that
each bit represents as much information as possible, while the
V1 = 0r constraint is given to enhance the discriminative power of
the hash codes. We simultaneously rewrite Eq. (3) and Eq. (5) can
be rewritten as follows,

min
B⃗(t),V⃗(t)

∥rS(t)
no − B⃗(t)Ṽ(t)T ∥2

F + ∥rS(t)
qn − B̃(t)

q V⃗(t)T ∥2
F

+ β∥B⃗(t) − V⃗(t)∥2
F s.t. B⃗(t) ∈ {−1, 1}nt×r, Y⃗(t) ∈

{−1, 1}c×r, V⃗(t)V⃗(t)T = ntIr, V⃗(t)1 = 0r.

(6)

where β is a trade‐off parameter.

Overall Objective Function

In summary, our SDOH‐HC is built based on hash centers and two
memories with distillation and replay. By combining Eq. (1), Eq. (2),
and Eq. (6), we could obtain its overall loss function,

min
B⃗(t),V⃗(t),Y⃗(t)

∥rS(t)
no − B⃗(t)Ṽ(t)T ∥2

F + ∥rS(t)
qn − B̃(t)

q V⃗(t)T ∥2
F

+ β∥B⃗(t) − V⃗(t)∥2
F + θ(∥rK − Ỹ(t)Y⃗(t)T ∥2

F + ∥C − Y⃗(t)T ∥2
F)

+ η∥rL⃗(t) − B⃗(t)Y⃗(t)T ∥2
F , s.t. B⃗(t) ∈ {−1, 1}nt×r, Y⃗(t) ∈

{−1, 1}c×r, V⃗(t)V⃗(t)T = ntIr, V⃗(t)1 = 0r.

(7)

Experiment

Datasets

Three benchmark datasets are chosen for evaluation, i.e., CIFAR‐
10, MIRFlickr, and NUS‐WIDE, the last two of which are multi‐label
datasets. When evaluating, two samples are viewed as similar if they
correspond to the same label on CIFAR‐10. For multi‐label datasets
MIRFlickr andNUS‐WIDE, two samples are considered similar if they
share at least one common label.

Evaluation Metrics

Following existing online hashing literature, we employed two
widely‐used metrics, namely mean average precision (MAP) and
precision‐recall (P‐R) curves, to evaluate the efficacy. Higher MAP
scores indicate superior performance and larger areas under the P‐R
curves signify more favorable outcomes.

Comparison with Baselines

1 2 3 4 5 6 7 8 9 10

Round

0

0.2

0.4

0.6

0.8

1

M
A

P

CIFAR-10@16 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

1 2 3 4 5 6 7 8 9

Round

0.3

0.5

0.7

0.9

M
A

P

MIRFlickr@16 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

1 2 3 4
Round

0

0.2

0.4

0.6

0.8

M
A

P

NUS-WIDE@16 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

1 2 3 4 5 6 7 8 9 10
Round

0

0.2

0.4

0.6

0.8

1

M
A

P

CIFAR-10@64 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

1 2 3 4 5 6 7 8 9
Round

0.3

0.5

0.7

0.9

M
A

P

MIRFlickr@64 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

1 2 3 4
Round

0

0.2

0.4

0.6

0.8

M
A

P

NUS-WIDE@64 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

Figure 2. The MAP‐round curves of on three datasets.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

P
re

ci
si

on

CIFAR-10@32 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

P
re

ci
si

on

MIRFlickr@32 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P
re

ci
si

on

NUS-WIDE@32 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

P
re

ci
si

on

CIFAR-10@64 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P
re

ci
si

on

MIRFlickr@64 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P
re

ci
si

on

NUS-WIDE@64 bits

OSH
BSODH
OHWEU
HMOH
ATHOH
FOH
Ours

Figure 3. The precision‐recall curves on three datasets.

To comprehensively demonstrate the online retrieval performance
of our model as streaming data arrives, we plotted the performance
of all methods on three datasets with 16‐bit and 64‐bit hash code
lengths in Fig. 2. Additionally, the precision‐recall (P‐R) curves of 32
bits and 64 bits hash codes are shown in Fig. 3. From these results,
we can observe that our proposed method always achieves the best
performance in various cases on three datasets, demonstrating the
effectiveness of our method. As our proposed method focuses on
mitigating catastrophic forgetting, SDOH‐HC could well handle the
streaming data and offer satisfying retrieval performance.

Please refer more experiments results such as the MAP results of
our method and all the comparison methods at last round on three
datasets, training time comparison, ablation study, and convergence
to our paper, due to the page limit.

Conclusion

In this paper, we propose a new online hashing method for stream‐
ing data retrieval. SDOH‐HC belongs to two‐step hashing, contain‐
ing hash codes learning and hash function learning steps. SDOH‐
HC has made great efforts for mitigating the catastrophic forgetting.
First, we design the learnable hash centers which are guided by both
fixed Hadamard‐based hash centers and the former hash centers of
last round. Then, to embed more knowledge learned from former
rounds, exemplars are chosen and stored in exemplar memory. Fi‐
nally, our hash codes learn from hash centers, exemplars, and the
revised hash formulation through the novel overall objective func‐
tion. To optimize all variables, we present a discrete online optimiza‐
tion with linear complexity, which could learn hash codes accurately
and fast. Experimental results on three benchmark datasets demon‐
strate the effectiveness of both SDOH‐HC and functional properties
of the multiple components of our method.

References

[1] Mingbao Lin, Rongrong Ji, Hong Liu, Xiaoshuai Sun, Shen Chen, and Qi Tian. Hadamard matrix
guided online hashing. International Journal of Computer Vision, 128:2279–2306, 2020.

[2] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995.

[3] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Jiashi Feng.
Central similarity quantization for efficient image and video retrieval. In CVPR, pages 3083–
3092, 2020.

* Corresponding author, luoxin.lxin@gmail.com. 31th ACM Multimedia, October 29-November 3, 2023, Ottawa, ON, Canada zhangchongyu22@gmail.com

mailto:zhangchongyu22@gmail.com

	References

